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Abstract. A novel hierarchical model is introduced to solve a general
problem of detecting groups of similar objects. Under this model, detec-
tion of groups is performed in hierarchically organized layers while each
layer represents a scope for target objects. The processing of these layers
involves sequential extraction of appearance features for an individual ob-
ject, consistency measurement features for nearby objects, and finally the
distribution features for all objects within the group. Using the concept of
scope-based normalization, the extracted features not only enhance local
contrast of an individual object, but also provide consistent characteri-
zation for all related objects. As an example, a microcalcification group
detection system for 2D mammography was developed, and then the
learned model was transferred to 3D digital breast tomosynthesis with-
out any retraining or fine-tuning. The detection system demonstrated
state-of-the-art performance and detected 96% of cancerous lesions at
the rate of 1.2 false positives per volume as measured on an independent
tomosynthesis test set.
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1 Introduction

In this study, we tackle a commonly seen problem in medical image analysis:
how to transfer the knowledge learned from existing training data to a new
data without retraining or fine-tuning the system, in the situation when the
new data has large intensity variations compared to the training data. This is
especially valuable if the newly acquired data is rare or expensive. For example,
deep convolutional neural networks will not be applicable for this task as they
require larger amounts of training data.

One application of such a knowledge transfer problem is the detection of
microcalcification (MC) groups in 3D digital breast tomosynthesis (DBT). A
MC group is composed of multiple small and similar individual MCs, and is
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(a) A mammography image (b) A DBT volume

Fig. 1. (a) Left: An example of a malignant mammography screening image from GE
Senographe mammography system showing the difficulty of finding MC groups. Right
top: The local MC group region. The region is small and MCs are barely visible even
with adjusted window level to enhance contrast. Right bottom: The ground truth
of individual MCs (the bounding boxes), and the malignant group (the convex hull
contour). (b) An example of GE SenoClaire DBT volume with manually labeled group
contour on one slice (the green contour). The inter-slice boundaries of the group are
labeled as green points.

considered a possible sign of breast cancer. Because MCs may be small and lack
enough contrast (as in Figure 1(a)), they can be easily missed by radiologists
during the routine screening process. Needless to say, a MC group computer-
aided detection (CAD) can help radiologists locate suspicious regions and help
them make diagnostic decisions.

A large number of literature has been reported on creating CAD system
for MC groups in 2D mammography (as in Figure 1(a)). However, publications
on CAD for recently emerged DBT (as in Figure 1(b)) are very limited. This
is due to the difficulty of collecting enough cancer cases to train a DBT CAD
from scratch. Instead, most researchers built systems on small DBT datasets
with limited training [1,2] or applied a mammography CAD directly on slices or
projections of DBT volumes [3,4,5].

Mammography and DBT are different imaging technologies both targeting
abnormalities inside woman breasts. The MCs in mammography images and
DBT volumes share similar properties like appearance, shape and spatial distri-
bution in 2D. At the same time they differ greatly in brightness, contrast and
presence of another spatial dimension. Building a DBT CAD by transferring
common knowledge learned from a large number of easily accessible mammogra-
phy images can be more reliable than to train a CAD based on a small number
of DBTs. We further argue that the key to perform such knowledge transfer is
to build a robust system that overcomes intensity variations within the exist-
ing training data. To achieve this, a multi-layer bottom-up hierarchical model is
proposed to solve a general problem of detecting a group of similar objects.
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2 Methods

2.1 The Multi-Layer Hierarchical Model

The proposed hierarchical model is shown in Figure 2. The model is composed
of multiple connected layers. Each layer represents areas of interest associated
with the target objects. The area of interest is the “scope” of the object.

Individual Layer

Cluster Layer

Neighborhood 

Layers

Appearance 

Features

Consistency 

Features

Distribution 

Features

Fig. 2. The proposed bottom-up hierarchical
model.

The bottom layer is called “in-
dividual layer”, which focuses on
individual objects (or parts of ob-
jects). The scope of this layer is
closely around the individual ob-
ject, and the objects are treated
independently from each other.

The topmost layer is called
“cluster layer”, which represents
the entire group of objects. The
scope of this layer includes all the
objects in the group.

The layers between individual
layer and cluster layer are called
“neighborhood layers” that han-
dle the relationship among ob-
jects. The scopes of these lay-
ers depend on the number of ob-
jects to compare. Multiple neigh-

borhood layers can be created with different scopes.
The model also guides feature extraction at each layer. Close to the individual

layer, appearance features for individual object should be extracted. Then consis-
tency measurements should be added to the feature set when system processing
the neighborhood layers. Close to the cluster layer, the feature set expands to
include distribution measurement of objects within groups. Please note that the
model only provides a guidance and there is no clear boundary of where each
type of features has to be computed.

Furthermore, the concept of “scope” plays an important role to extract robust
features within each layer. One possible usage is to use normalization within each
of the local scopes as stated below.

2.2 Scope-based Normalization

Image normalization is an effective way to reduce image intensity variations. A
simple region-based brightness and contrast normalization approach would be to
linearly transform all pixel values within the region to have zero mean and unit
standard deviation. In contrast to the entire image based normalization that
may not be effective to balance object local contrast variations, the scope-based
normalization applies to each scope region independently:
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I ′(x) = (I(x) − µs)/σs ∀x ∈ s (1)

where I(x) is the input image pixel value inside scope s. The mean and standard
deviation of all the pixels in s are µs and σs. I

′ is the output normalized pixels.
Equation 1 can apply to feature maps and decrease feature value variation, with
I being feature values. One recent study showed that normalization of feature
maps can also speedup learning process for complicated detection systems [6].

With scope-based normalization, local contrast of the individual objects is
enhanced in the lower level of the layers, and the consistency among neighboring
objects can be uniformly evaluated in the neighborhood layers.

3 MC Group CAD Implementation Details

Our MC group detection system is built following the guidance of the hierarchical
model. The system starts with generating individual MC candidates. After that,
four layers are used to remove false positives (FPs): one bottom appearance
layer, two neighborhood layers and one top distribution layer.

All features from each of the layers are extracted from pre-computed image
feature maps. The feature maps are: the original input image, the MC enhanced
image using grayscale white-top hat operation, the gradient image, and two
Laplacian of Gaussian images with different Gaussian kernels.

Many approaches can find bright spots on images as MC candidates with
high sensitivity and also with a large number of FPs. Here Frangi’s objectness
measure [7] is used to get 2D bright blobs on the grayscale white-top hat image
followed by affine shape adaptation [8]. The output candidates are described as
rotated ellipses, with the blob measure responses, best scales and corresponding
eigenvalues.

3.1 Layer Designs

Individual Layer The scope of the first bottom layer Sa is defined as elliptic
regions of generated individual MC candidates. Individual feature maps are first
locally normalized within Sa and the regional features are extracted to describe
the local appearance of MCs. These regional features are simply picked as the
minimum value, maximum value, skewness and kurtosis from each Sa on each
feature map. Other appearance features include descriptors of the MC shape.
They are candidate’s eigenvalues recomputed from normalized image based on
scope Sa, the ratio of the eigenvalues, the rotation angles, and the scale of the
candidates. The output feature set for this layer is fSa

.

The First Neighborhood Layer The scope of the first neighborhood layer
Sn1 is a 6-by-6 mm bounding box centered at each candidate’s center. This layer
is designed as a region containing individual MC and its surrounding context.
For that reason, the scope of this layer is chosen to be larger than the individual
layer. The same appearance features are computed on all the feature maps with
normalization based on Sn1 to form feature set fSn1

of this layer.



Computer-aided detection of microcalcification groups 5

The Second Neighborhood Layer Clinically, the grouped MCs are identified
within a 1 cm3 volume. Accordingly, the scope of the second neighborhood layer
Sn2 is selected as regions that contain candidates within lmax = 10 mm range.
Specifically, for a candidate c, its all neighboring candidates c′ ∈ N(c) with
dist(c, c′) ≤ lmax are found. Sn2 is 2D bounding box regions with all c and c′s
enclosed. Note that Sn2 may be different from candidate to candidate.

The feature set fSn2
computed in this layer is to measure the consistency of

the appearance features f ′

Sa
between c and c′s. f ′

Sa
has the same features as in fSa

but with normalization on scope Sn2. The difference of the mean and standard
deviation between c and n(c) number of candidates in N(c) are measured:

fSn2
(c) =







f ′

Sa
(c)−

1

n(c)

∑

c′∈N(c)

f ′

Sa
(c′),

√

∑

c′∈N(c)(f
′

Sa
(c)− f ′

Sa
(c′))2

n(c)







.

The Cluster Layer The output MC candidates form groups at this layer. So
the scope Sc of this layer is each possible MC group. An agglomerative clustering
approach [9] is used to form possible groups with a bottom-up fashion following
the descending order of dissimilarity value d. Candidates ci and cj are expected
to be grouped first if they are close in space, have similar appearance, or both
are likely from MC groups. Therefore, d is defined as a combination of distance
between ci and cj and their probabilities p ∈ [0, 1] achieved from the output of
the last neighborhood layer:

d(ci, cj) =
dist(ci, cj)

lmax

+a|pci−pcj |+b

(

1.0−
pci + pcj

2

)

for dist(ci, cj) ≤ lmax,

where a and b are constants. a = b = 1 is chosen, which gives reasonable grouping
results during the experiment.

The feature set fSc
for each possible group contains distribution information

for the MC candidates inside the group, for example, the eigenvalue of the dis-
tribution in space, the area of the group, the density of the candidates, the mean
and standard deviation of the dissimilarity measures. fSc

also includes the mean
and standard deviation of candidates’ appearance features in fSa

normalized
based on scope Sc.

Once each candidate group gets a classifier score, the final outputs can be
generated by picking up the group with the largest probability and removing all
other overlapping groups iteratively.

3.2 Training

A mammography training dataset with large image intensity variations is col-
lected. The dataset includes images from eleven mammography vendors, and
is mixed with traditional film, computed radiography (CR) and digital radio-
graphy (DR) mammography images. The total radiologist or mammography
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expert-truthed biopsy-proven malignant MCs and MC group numbers are 13614
and 1305 respectively. Most of the training images are raw X-ray projections
that were passed through a pixel-wise negative log function before inputting
to the system. Some vendors contain a small number of images ready for ra-
diologist screening, which are input for training directly. Images generated by
removing local means from the log-negated projections are also used to increase
the variability of the training set.

Because the feature sets fSa
and fSn1

are generated independently, for sim-
plicity, only one classifier is trained on the combined set. In total, there are
three ensemble of randomized decision trees classifiers trained for the feature sets
{fSa

, fSn1
}, {fSa

, fSn1
, fSn2

}, and fSc
. Each classifier corresponds to a threshold

to remove FPs.

3.3 Extension to Detect in 3D DBT Volumes

The 3D DBT provides additional depth information. However, due to the limited
angle of X-ray source used in reconstruction, the resolution of the depth is much
worse than the resolution within each DBT slice.

Hence obvious steps are made to adapt 2D mammography solution to 3D
DBT without retraining or fine-tuning the system with limited DBT data. The
modifications of the 2D system include making 2D candidate generator work
slice-by-slice and change the scopes Sn2

and Sc to be in 3D. With the dimension
change of the scopes, all the appearance features are now computed in 3D, except
the shape and distribution descriptors are still computed in a 2D fashion with
the depth information of the candidates ignored.

4 Experiments

4.1 Performance on Mammography Test Set

The proposed CAD were first evaluated on a separate GE Senographe projection
image dataset with 5683 and 304 truthed biopsy-proven malignant MCs and MC
groups. The candidate generator provided 92% sensitivity to individual MCs
with 1500 FPs per image. Figure 3 shows the free-response receiver operating
characteristic (FROC) curves of the test set from the outputs of the three pre-
trained classifiers.

To test the system robustness with respect to unseen data, all GE projection
images and their counterparts with subtracted local means were removed from
the training set. This reduced about 33% of all the positive training samples.
The FROC in red curve in Figure 3 shows that the system still keeps a high
sensitivity rate even with this smaller training dataset.

The black FROC curves were generated from training features without scope-
based normalization. Instead, only a global entire breast region based normal-
ization was used for each image. Especially, the FROCs in Figure 3(a) show
the strength of the scope-based normalization to increase the robustness of both
appearance features and consistency measurement features.



Computer-aided detection of microcalcification groups 7

0 10 20 30 40 50 60 70 80
0.6

0.65

0.7

0.75

0.8

0.85

0.9

FPs per image

S
e

n
si

tiv
ity

 t
o

 le
si

o
n

s

 

 

Proposed MC classifier 1
Proposed MC classifier 2
Classifier 1 with GE reduction
Classifier 2 with GE reduction
Classifier 1 without scope normalization
Classifier 2 without scope normalization

(a) Individual MC FROCs
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(b) MC Group detection FROCs

Fig. 3. (a) The output FROCs from the first individual MC level classifier (trained
with feature set {fSa , fSn1

}) and the second classifier (trained with feature set
{fSa , fSn1

, fSn2
}). (b) The output FROCs from the MC group level classifier (trained

with feature set fSc).

4.2 Performance on DBT Volume Image

The proposed system was tested on an independent GE SenoClaire DBT volume
set with 23 labeled malignant MC groups and 42 normal cases, no individual
MC labeled and no other abnormalities visible. Figure 4(a) shows the MC group
detection FROC and the comparison with other previously published MC group
detection performances on DBT [1,2,3,4,5,10]. Figure 4(b) shows two successful
detections. The proposed system shows state-of-the-art performance compared
with these published works, although all these works including ours were tested
on different and relatively small datasets (≤ 23 cancerous lesions). We need
to emphasize that there was absolutely no training or fine-tuning on the DBT
data for our system, while other works were not restricted to develop on small
numbers of DBTs that could cause overfitting. The study from Morra et al. [10]
reported better performance, but the authors used Hologic cases with two-view
DBT volumes per breast, which may double the chance to find MC groups, while
the GE set we were using had only one DBT view available. Furthermore, there
is no method details disclosed in [10].

5 Conclusion

A CAD for detection of MC groups was built based on 2D mammography images
under the guidance of a novel hierarchical model, and features generated by
scope-based normalization were used. The experiment shows the developed CAD
system is robust to intensity variations across different images. Based on that,
this CAD can be easily extended to detect MC groups in 3D DBT volumes
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(a) The DBT test set MC group FROC (b) Detection examples

Fig. 4. (a) Malignant MC group FROC tested on independent DBT volume set with
comparison to other reported performances. (b) Examples of the output detections
(red) and their corresponding truth contours (green) displayed in DBT slices.

without acquiring additional DBT training data, and still shows state-of-the-art
performance. Further studies of using this model to test on larger dataset or to
distinguish between malignant and benign MC groups are needed.
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